How to get Rapid Thermalization from Perturbative QCD in Heavy Ion Collisions

S.M.H. Wong

Ohio State University Columbus, U.S.A.

July 2001

With: Eric Braaten and Ulrich Heinz

1 – Introduction

Thermalization

- An old question but one that still haunts us from the very beginning!
- Tough question to answer
 - ⇒ Take the easy way out!
 - ⇒ Assume fast thermalization!
- Parton based numerical models:
 PCM, work by S.W., others ... etc.
 The system clearly approaches towards equilibrium but not nearly as fast as one would have liked.
- Recently from RHIC data: Elliptic flow $v_2(p_t)$ measurements for π and $p + \bar{p}$ agree with results from hydrodynamics model!!!
- But numerical models says:
 Hydrodynamics shouldn't work!
- Then RHIC says:

 If hydro works, then kinetic equilibration has to be very, very fast indeed!!
- HOW??
 Something non-perturbative or perturbative?

2 – Some Basic Facts

In the initial parton phase, we know:

- Small Angle Scattering
 - large amplitude
 - inefficient for momentum rearrangement
 - forward-backward cancellation
- Large Angle Scattering
 - small amplitude
 - efficient for momentum rearrangement
 - much less forward-backward cancellation
- Elastic Scattering
 - will by no means the most important for thermalization
 - insufficient for thermalization
 - need inelastic processes
 - \blacksquare must go beyond lowest order in α_s
- How far beyond?
- From past experience
 2

 → 2

 → 3 are of comparable size. Including both is still not enough!
- Need to go much further beyond!
- Need simplification!

3 – Simplification

- Parton plasma is gluon dominated
 only consider gluons!
- Large angle scattering is efficient for thermalization but is small in magnitude!
- Small angle scattering is not efficient but is large!

Solution: Large Angle + Small Angle

For example considering only $gg \leftrightarrow (n-2)g$ processes

The aims

- Efficient momentum rearrangement, and
- Sizeable amplitudes
 - ⇒ Largest collision terms

The means

- One and only one large angle scattering \forall values of n.
- The rest of the gluons are emitted or absorbed nearly collinearly.
- Hopefully we can get a boost in the large angle!

7 - Summary/Outlook/Remarks

Use

Large Angle Hard Collisions

介介介介

Small Angle Emissions-Absorptions

To boost thermalization!

- Multi-gluon processes $mg \leftrightarrow (n-m)g$:
 - Sum up collinear gluons.
 - \diamond Arrange into \sim a factor \times (2 \leftrightarrow 2).
- Enhancement is Q^2 dependent!
- Early on, most collisions are hard
 - \implies large to fairly large Q^2 enables fast momentum rearrangement!
- At RHIC, usually quoted initial temperature:

 $T \sim 500 \; \mathrm{MeV}$

- \diamond when it does not typically give very large Q^2 ,
- ♦ if this mechanism is correct, kinetic equilibrium must have been completed by then,
- it seems to be consistent with data so far.
- Not our last words, still on-going investigation!

Impose one large angle scattering + small angle emission-absorption for the rest.

E.g. gluon 4||5 in $C_{12\leftrightarrow 345}(p_1)$

In the collinear limit, relabel $(4,5) \rightarrow (i,j)$

$$\sum |\mathcal{M}_{12 o 3ij}|^2 \simeq rac{8\pilpha_s(s_{ij})}{s_{ij}} P_{gg}(z) \sum |\mathcal{M}_{12 o 34}|^2$$

where

$$P_{gg}(z) = 2 N_c \left(\frac{1-z}{z} + \frac{z}{1-z} + z(1-z) \right).$$

$$\int [dp_i][dp_j]D_{12,3ij} = \int [dp_{4*}]D_{12,34*} \int \frac{ds_{ij}}{2\pi}[dp_i][dp_j]D_{4*,ij}$$

$$\int \frac{ds_{ij}}{2\pi} [dp_i][dp_j] D_{4^*,ij} = \int \frac{dz \, ds_{ij}}{16\pi^2}$$

$$\int d\Phi_{3ij} D_{12,3ij} \sum |\mathcal{M}_{12\to 3ij}|^2$$

$$\simeq \int d\Phi_{34} D_{12,34} \sum |\mathcal{M}_{12\to 34}|^2 \int \frac{dz \ ds_{ij}}{s_{ij}} \frac{\alpha_s(s_{ij})}{2\pi} P_{gg}(z) \ .$$

Large angle part

Small angle part

Therefore for time-like splitting and coalescence

$$C_{12\leftrightarrow 345}^{4\parallel 5}(p)\simeq -rac{1}{
u_g}\int [dp_2]d\Phi_{34}D_{12,34}rac{1}{3!}\sum |\mathcal{M}_{12 o 34}|^2 \ imes \int dzrac{ds_{45}}{s_{45}}rac{lpha_s(s_{45})}{2\pi}P_{gg}(z) \ imes \left[f_1f_2(1+f_3)(1+f_4(z))(1+f_4(1-z)) - (1+f_1)(1+f_2)f_3f_4(z)f_4(1-z)
ight]$$

where $f_i(z) = f(zp_i)$.

Similarly for gluon 2||5 for space-like splitting and absorption, go through similar steps to get

$$C_{12\leftrightarrow 345}^{2\parallel 5}(p_1) \simeq -\frac{1}{\nu_g} \int [dp_2] d\Phi_{34} D_{12,34} \frac{1}{3!} \sum |\mathcal{M}_{12\to 34}|^2$$

$$\times \int dx \frac{dt_{25}}{t_{25}} \frac{\alpha_s(|t_{25}|)}{2\pi} P_{gg}(x)$$

$$\times \left[f_1 f_2(\frac{1}{x})(1+f_3)(1+f_4)(1+f_2(\frac{1-x}{x})) - (1+f_1)(1+f_2(\frac{1}{x}))f_3 f_4 f_2(\frac{1-x}{x}) \right]$$

Convolution of

hard binary collision with small angle subprocess!

5.2 – Virtual Corrections

In the vacuum, according to Altarelli-Parisi the probability distribution

$$\mathcal{P}_{gg} + d\mathcal{P}_{gg} = \delta(1-z) + \frac{\alpha_s}{2\pi} P_{gg}^+(z) ds$$

where $P_{gg}^{+}(z)$ is the regularized gluon splitting function or the kernel of the pure glue part of **DGLAP** evolution equation.

Momentum conservation (in the absence of $q\bar{q}$)

$$\Longrightarrow \int_0^1 dz z P_{gg}^+(z) = 0$$

or writing

$$P_{gg}^{+}(z) = P_{gg}(z)|_{+} + C_{T=0}\delta(1-z)$$
,

where $C_{T=0}$ is a constant and |+ denotes plus-distribution prescription, which implies

$$\int_0^1 dz \Big\{ z P_{gg}(z)|_+ + \mathcal{C}_{T=0} \, \delta(1-z) \Big\} = 0 \; .$$

It follows

$$C_{T=0} = -\int_0^1 dz z P_{gg}(z)|_{+} .$$

In a QCD medium, \mathcal{P}_{gg} for $g^* \to gg$ is now

$$\begin{aligned} \mathcal{P}_{gg} + d\mathcal{P}_{gg} \\ &= \delta(1-z) + \frac{\alpha_s}{2\pi} \left(\frac{\mathcal{C}_{T \text{ out}}^{\text{emit}}(p)\delta(1-z)}{+P_{gg}(z)|_{+}} \frac{\left(1 + f(zp)\right)\left(1 + f((1-z)p)\right)}{1 + f(p)} \right) ds \end{aligned}$$

Momentum conservation

$$\int_0^1 dz z \left(\dots \right) = 0 .$$

$$\mathcal{C}_{T \, \mathrm{out}}^{\mathrm{emit}}(p) = -\int_{0}^{1} dz z P_{gg}(z) \frac{\left(1 + f(zp)\right)\left(1 + f((1-z)p)\right)}{1 + f(p)}$$

Adding virtual corrections $\implies 1-z$ factor!

For other $gg \to g^*$, $g \to g^*g$, and $g^*g \to g$ there are similar quantities $\mathcal{C}_{T\,\mathrm{in}}^{\mathrm{abs}}(p)$, $\mathcal{C}_{T\,\mathrm{in}}^{\mathrm{emit}}(p)$, and $\mathcal{C}_{T\,\mathrm{out}}^{\mathrm{abs}}(p)$, respectively. They differ from $\mathcal{C}_{T\,\mathrm{out}}^{\mathrm{emit}}(p)$ only in the product of distributions.

Now including virtual corrections, our example: for gluon 4||5

$$C_{12\leftrightarrow 345}^{4\parallel 5}(p) \simeq -\frac{1}{\nu_g} \int [dp_2] d\Phi_{34} D_{12,34} \frac{1}{3!} \sum |\mathcal{M}_{12\to 34}|^2$$

$$\times \int dz \frac{ds_{45}}{s_{45}} \frac{\alpha_s(s_{45})}{2\pi} (1-z) P_{gg}(z)$$

$$\times \left[f_1 f_2 (1+f_3) (1+f_4(z)) (1+f_4(1-z)) - (1+f_1) (1+f_2) f_3 f_4(z) f_4(1-z) \right].$$

Manipulate expression to resemble the binary collision:

$$C_{12\leftrightarrow 345}^{4\parallel 5}(p) \simeq -\frac{1}{\nu_g} \int [dp_2] d\Phi_{34} D_{12,34} \frac{1}{3!} \sum |\mathcal{M}_{12\to 34}|^2$$

$$\times \left[f_1 f_2 (1+f_3) (1+f_4) F_{\mathrm{out}}^{\mathrm{emit}}(p_4, Q^2) - (1+f_1) (1+f_2) f_3 f_4 F_{\mathrm{in}}^{\mathrm{abs}}(p_4, Q^2) \right].$$

where Q^2 is the momentum transfer of $12 \rightarrow 34$ and

$$\begin{aligned} \textbf{\textit{F}}_{\text{out}}^{\text{emit}}(\textbf{\textit{p}}, \textbf{\textit{s}}) &= \int \frac{dz \; ds_{ij}}{s_{ij}} \frac{\alpha_s(s_{ij})}{2\pi} (1 - z) P_{gg}(z) \\ &\times \Big(1 + f((1 - z)p) \Big) \Big(1 + f(zp) \Big) / \Big(1 + f(p) \Big) \end{aligned}$$

$$\begin{aligned} \textbf{\textit{F}}_{\text{in}}^{\text{abs}}(\textbf{\textit{p}}, \textbf{\textit{s}}) &= \int \frac{dz \; ds_{ij}}{s_{ij}} \frac{\alpha_s(s_{ij})}{2\pi} (1 - z) P_{gg}(z) \\ &\times f((1 - z)p) f(zp) / f(p) \end{aligned}$$

$5.3 - C_4(p_1) + C_5(p_1)$ in the Collinear Limit

For simplicity, let

- gluon 1 with momentum p_1 be one of the four main gluons
- no collinear emission from or absorption by gluon 1

Otherwise collecting all possibilities of collinear emission and absorption!

$$\begin{split} C_{12\leftrightarrow 34}(p_1) + C_{12\leftrightarrow 345}^{\parallel}(p_1) + C_{123\leftrightarrow 45}^{\parallel}(p_1) \\ &\simeq -\frac{1}{\nu_g} \int [dp_2] d\Phi_{34} D_{12,34} \frac{1}{2!} \sum |\mathcal{M}_{12\to 34}|^2 \\ &\times \Big[f_1 f_2 (1+f_3) (1+f_4) \\ &\times \Big(1+F_{\rm in}^{\rm abs}(p_2,Q^2) + F_{\rm out}^{\rm emit}(p_3,Q^2) + F_{\rm out}^{\rm emit}(p_4,Q^2) \\ &+ F_{\rm in}^{\rm emit}(p_2,Q^2) + F_{\rm out}^{\rm abs}(p_3,Q^2) + F_{\rm out}^{\rm abs}(p_4,Q^2) \Big) \\ &- (1+f_1) (1+f_2) f_3 f_4 \\ &\times \Big(1+F_{\rm out}^{\rm emit}(p_2,Q^2) + F_{\rm in}^{\rm abs}(p_3,Q^2) + F_{\rm in}^{\rm abs}(p_4,Q^2) \\ &+ F_{\rm out}^{\rm abs}(p_2,Q^2) + F_{\rm in}^{\rm emit}(p_3,Q^2) + F_{\rm in}^{\rm emit}(p_4,Q^2) \Big) \Big] \end{split}$$

 $F(p,Q^2) > 0$ Enhance the binary large angle collision!

6 – Beyond the 5-gluon Processes

(Still on-going work)

Preliminary remarks: In general,

- Multi-gluon processes with one large angle collision each
- Many collinear gluon emissions and absorptions:
 - Fairly large Log's to compensate for small α_s !
 - Have to sum up these Log's
- Schematically, can arrange

$$C(p_1) = C_4 + \sum_{n=5} C_n(p_1)$$

In the collinear limit, very roughly

$$C^{\parallel}(p_1) \sim C_4(p_1) \otimes \mathbb{F}(p_1, Q^2) \mathbb{F}(p_2, Q^2) \mathbb{F}(p_3, Q^2) \mathbb{F}(p_4, Q^2)$$

- $\mathbb{F}(p,Q^2)$'s satisfy non-linear, coupled differential equations
 - Have to be solved numerically!
- Try linearization to get uncoupled equations
 - Only partial enhancement is included!
 - Still get sizable enhancement factors!

4 – Relative Sizes of the n+1 to n Process

Make rough estimate, using

$$|\mathcal{M}_{gg\leftrightarrow(n-2)g}|^2 \sim F_{KS}(n) |\mathcal{M}_n^{PT}|^2$$

where

$$|\mathcal{M}_n^{\text{PT}}|^2 = \frac{g_s^{2n-4} N_c^{n-1}}{N_c^2 - 1} \sum_{i>j} s_{ij}^4 \sum_{perm.} \frac{1}{s_{12} s_{23} \cdots s_{n1}}$$

is the Parke-Taylor formula, $s_{ij} = (p_i + p_j)^2$ and

$$F_{KS}(n) = \frac{2^n - 2(n+1)}{n(n-1)}$$

is the Kunszt-Stirling factor.

- 4 gluons define the single large angle scattering scattering into deficient region in *p*-space
- The other (n-4) gluons collinear to these!

$$s_{l}$$
 — large
$$s_{ij} \stackrel{<}{<} s_{s} \sim m_{t}^{2} = m_{D}^{2}/2 - \frac{1}{2} = \frac{1}{2} =$$

- Count s_l^4 terms in the numerator
- Count terms with largest no. of s_s^4 in the denominator

One gets

$$|\mathcal{M}_n^{\rm PT}|^2 \simeq \frac{g_s^{2n-4}N_c^{n-1}}{N_c^2-1} \ 3(n-2)s_l^4 \ \frac{3!(n-3)!}{2 \ s_l^4 s_s^{n-4}}$$

therefore

$$\frac{|\mathcal{M}_{(n+1)}^{\rm PT}|^2}{|\mathcal{M}_n^{\rm PT}|^2} \simeq \frac{4\pi\alpha_s N_c(n-1)}{s_s} \ .$$

Ratio of (n+1) to n collision terms

$$R(n) \simeq \frac{F_{KS}(n+1)}{F_{KS}(n)} \frac{4\pi\alpha_s N_c}{m_t^2} \frac{(n-1)}{(n-2)} \frac{m_D^2}{48\pi\alpha_s}$$

n	R(n)	$\prod_{i=4}^{n} R(i)$
4	1.50	1.50
5	1.11	1.67
6	1.00	1.67
7	0.96	1.59
8	0.94	1.49
10	0.93	1.29
20	0.96	0.72
30	0.97	0.50
100	0.99	0.16

Higher terms are of sizeable importance!!

5 – Perturbative Approach

Transport equation

$$p^{\mu} \frac{\partial f(p)}{\partial x^{\mu}} = C(p)$$

5.1 – 5-gluon processes

$$C_{12\leftrightarrow 345}(p_1) = -\frac{1}{\nu_g} \int [dp_2] d\Phi_{345} D_{12,345} \frac{1}{3!} \sum |\mathcal{M}_{12\to 345}|^2 \times [f_1 f_2 (1+f_3)(1+f_4)(1+f_5) -(1+f_1)(1+f_2)f_3 f_4 f_5]$$

$$C_{123\leftrightarrow 45}(p_1) = -\frac{1}{\nu_g} \int d\Phi_{23} d\Phi_{45} D_{123,45} \frac{1}{2!2!} \sum |\mathcal{M}_{123\to 45}|^2 \times [f_1 f_2 f_3 (1 + f_4)(1 + f_5) - (1 + f_1)(1 + f_2)(1 + f_3) f_4 f_5].$$

where
$$\nu_g = 2 \times 8$$
,
 $f_i = f(p_i), D_{12,345} = (2\pi)^4 \delta^4(p_1 + p_2 - p_3 - p_4 - p_5)$,
 $[dp] = \frac{d^3 \mathbf{p}}{(2\pi)^3 2p^0}, \int d\Phi_{12...m} = [dp_1][dp_2] \dots [dp_m]$.